五,设计

1,阀体

   可分为全焊接阀体设计和分体式阀体设计。

   全焊接阀体设计有筒状结构和球状结构,筒状结构是双焊缝,焊接过程热量输入大,残余应力复杂,轴向和径向变形大。球状结构Cameron公司是四条焊缝拼接,现在由于工艺技术进步,采用左右阀体热锻压成型,可中间单焊缝焊接成型,减少线能量输入,降低轴向和径向变形。

   分体式结构一般由阀体和左右连接体组成。连接体与阀体由螺栓连接,连接法兰厚度与螺栓的连接强度应按与阀体内径相当的法兰进行类比设计,其连接强度必须防止管道应力而产生连接松弛,使密封失效。阀体与连接体面对面接触,中间无间隙。密封必须满足失火安全要求,采用橡胶“O”型圈与缠绕式金属垫组合密封。如图(五)所示。


图(五)阀体与连接体防火结构

  阀体的材料为锻件,温度-29C°以上选用ASTM A105;-29C°以下选用ASTM A350 LF2。对于焊接阀体,对A105或LF2材料的化学成分、含碳量、碳当量以及硫、磷等元素应另有特殊限制。锻件按三级锻件标准验收,做100%无损探伤,焊缝处做着色检查和超声波探伤。

2,密封座与密封

   阀座采用组合密封结构,即金属对金属的初始“密封”,以阻挡固体颗粒的进入;用橡胶、PTFE塑料、尼龙、PEEK等软密封作为次级密封,以保证“零”级泄漏,如图(六)所示。但由于管线中的异物的意外导入对软密封材料的损坏,管线球阀均设有紧急密封剂的注入系统,以获得暂时性的密封要求。


图(六)组合密封结构

密封用的橡胶圈有圆形,三角形或其他特殊形状。每一公司都有自己的设计结构和工艺措施,防止橡胶圈在开关过程中被吹出(Blow out)或切坏。对于Class900磅级以上,应选用防爆降压(AED)特性的材料作为O型圈材料。

   PTFE的密封圈,一般采用筒状镶嵌式结构,亦可做成倒钩状组合式结构,旨在保证密封圈不被吹出而导致密封失效。

   密封座材料与阀体材料相同,化学镀镍,有弹簧加载以保证初始密封比压,弹簧可采用螺旋弹簧,板弹簧或碟形弹簧,材料为Inconel X-750。

   进口端和出口端阀座采用对称双向密封设计。这种活塞式的介质自密封结构,按照客户需要可设计成“单活塞效应”(Single piston action),压力自泄放密封座结构(图七)和“双活塞效应”(Double Piston effect)双重密封结构。(图八)


图(七)压力自泄放密封座结构

图(八)“双活塞效应”(Double Piston effect)双重密封结构


  单活塞效应即进口端密封,出口端腔体压力自动排放。

   双活塞效应即进口端、出口端同时密封,无论是气体介质或液体介质,腔体必须设有安全阀,以保证压力泄放。

   单活塞效应和双活塞效应设计的阀座,其腔体压力排放是有区别的。双活塞效应设计是腔体压力超过压力等级相应的压力值的1.33倍时排放,且排放至大气环境。而单活塞效应的设计则是只要腔体压力大于下游端管线压力就自动排放至下游管线。因此,一般公司把单活塞效应产品作为标准产品,双活塞效应产品作为选项产品。

   设置安全阀时,安全阀口径应≥1/2”,泄放压力≤1.33倍额定压力。阀座与连接体配合处应有失火安全设计,与阀座配合处连接体内表面应局部化学镀镍。

3,球体与支承轴

   管线球阀口径(2”或2”以上)大都采用支承球、浮动阀座结构(Trunnion mounted Ball and Floating Seat)。作用在球体上的介质力有两个滑动轴承支撑,对于高压、大口径,这一轴向推力可达到几十吨至几百吨,滑动轴的比压必须进行计算,其许用比压不能超过供货商提供的滑动轴套许用比压。许多公司都用不锈作为基体,内衬PTFE塑料,这种轴承套承载比压可达200~400Mpa,许用比压取100~200Mpa,且摩擦系数低,可降低球阀的操作扭矩。

   支承轴的设计,一种是在球上车削成上下轴颈,并用二个上下支撑板支承,中间内置由PTFE内衬的不锈钢轴套,支承轴长度L与轴颈d之比,由于结构限制取L/d=0.4~0.8。另一种设计是球体车削成内孔,上下由二个支承轴,支承在阀体上,这种设计一般L/d=1.2~2.。这二种结构,前者由于轴颈粗而短,所以球阀的阻力矩较大,而后者的上支承轴,同时又是传动扭矩的阀杆,所以是处于复合的受力状态,支承轴(阀杆)的材料可选用ANSI 4140并需化学镀镍。阀杆与球体扭矩的传递可用单键、双键、花键连接,亦有直接连接装配后与球体焊接的结构设计。

   球体的加工精度,圆度≤0.005mm,化学镀镍,镀层厚度高于阀座的镀层。

   对于大口径,高压力级阀门的球体,应作球体变形计算,这种变形足以引起密封失效。

4,阀杆与填料

   标准的阀杆安全设计应防止在工作压力下被“吹出”,阀杆上防吹出的凸缘处置一环状环,以减少摩擦系数。填料可采用二级“O”形圈密封,亦可采用皮碗形用PTFE加工的填料,并有失火安全石墨填料和紧急状态下外部密封剂的注入系统。在阀杆与球体接合部以及阀杆与阀体接触处应有一防静电机构,防止静电在球体上集聚,如图(九)所示。

      
图(九)阀杆与填料结构


5,DBB功能设计

   DBB功能设计是指无论是阀门处于开启或关闭状态,阀腔泄压排放时,上游端和下游端阀座应同时截止(Double Block & Bleed),并允许从排泄阀处对在线阀门进行阀座密封性能测试,而不影响管线运行。

6,紧急密封系统的设计

   紧急密封系统由注射器(Injector)和止回阀(Check Valve)组成,分别安装在阀体上,在阀座处的外测和阀杆填料处外侧。紧急密封系统可以用来阻止或减少管线中阀门密封座的泄漏,密封剂注射前要进行清洁和冲洗,有专门生产的清洁剂和密封脂,用手动或电动的工具将清洗剂或密封脂从注射器口注入,并按供货商所提供的使用说明进行清洁和紧急密封操作。(如图十)


图(十)注射器与止回阀


7,失火安全与防静电设计

  失火安全与防静电设计已在支承轴、密封座章节中予以说明,防静电结构设计,在24VDC下测定,电阻值不超过10欧姆。

8,阀门的操作

  阀门的操作,有手动、蜗轮传动、气动(双作用或弹簧复位),高压气动(直接使用管线气体)、电动、液动(双作用或弹簧复位)以及气液联动。气液联动可实施本地和远程控制,与卫星遥控的SCADA系统相配合,当下游压力降的速率或持续时间超多设定值时,(即管线爆裂),紧急切断阀自动截断,并带有救急性的蓄压器,供手动操作。

8,端部设计

  连接端按客户要求,有法兰连接端和焊接端。

  法兰连接端应带凸面或环形槽,其尺寸、公差与光洁度、以及打孔、法兰面,锪孔、倒孔等应按下列标准

   DN600及其以下,按ASME B16.5,其中DN550按MSS-SP44;

   DN650以上按ASME B16.47中A系列

  焊接端应按ASME B31.4中434.8.6节图(1)、(2)或ASME B31.8中图(14)和(15)。

9,螺栓

  阀体连接螺栓用ASTM A 193 B7材料制造,螺母用ASTM ( ) 制造,并符合NACE-TM 0284规定,客户可以要求作着色试验,按ASME第V篇24款进行。

10,直埋地下

  直埋地下的阀门为全焊接阀体管线球阀,阀杆按客户要求接长,阀杆接长部分设计应牢固,能抗地面承载,所有阀体上的连接管、密封剂注入器,底部排泄阀、安全泄放装置均接至地表,接管与阀体焊接。接长杆的设计,其长轴的绕曲和传动链结合部的间隙应予控制,防止开关过程中,球体不能准确地处于关或开的位置,造成传动失误。

11,范围

  按API标准6D,以及制造厂的装备能力,产品的供货范围:

   Class100-600磅级 DN1/2”-60”

   Class900磅级 DN1/2”-36”

   Class1500磅级 DN1/2”-16”

   Class2500磅级 DN1/2”-12”

   在特殊场合,国外供货商可提供

   Class150-600磅级 最大口径至DN72”

   Class900磅级 最大口径至DN40”

   Class1500磅级 最大口径至DN36”

   Class2500磅级 最大口径至DN24”